2018 Quadrantid Meteor Shower

   The annual Quadrantid Meteor Shower reaches its peak Wednesday morning January 3rd officially at 14:19 UT (9:14 am CST). The Quadrantids are one of the best meteor showers of the year but does not get much attention possibly because it’s winter in the northern hemisphere, and this area of the sky is not easily seen from south of the equator.
   The ZHR (average hourly rate) for this meteor shower ranges from 60 to several hundred. Best time for viewing is before sunrise as your part of the Earth is rotating toward the east sort of putting you headfirst into the meteor shower. To find the radiant for this meteor shower look for the stars of the Big Dipper and then look below the end stars in the handle.
click on graphic to see it larger
   Adding to the thrill of seeing a shooting star are the the planets Jupiter and Mars about 1o apart and closing in on a very close 0.2o separation on the 6th. Look closely and you may see Zubenelgenubi, one of the stars making up Libra the Scales. All three fit comfortably within the field of view of binoculars and contrast nicely in their respective apparent magnitudes (magnitudes shown on graphic).

Boötes the Herdsman

Boötes the Herdsman

   The radiant is the area from where the meteors seem to radiate outward from. Meteor showers owe their name to the constellation region the radiant is located within, and as this graphic shows the radiant is within the boundary of the constellation Boötes the Herdsman. So why the name Quadrantids?
   On some of the older star charts there is a now ‘extinct’ constellation called Quadrans Muralis, the Mural. This was a constellation located between Boötes and Draco the Dragon that was created in 1795 by French Astronomer Jérôme Lalande. It is a picture, or mural, of a Quadrant that had been used to map the stars. The Quadrantids Meteor Shower was named for the no longer used constellation.

   
   
   

Click here to go to the Qué tal in the Current Skies web site for monthly observing information, or here to return to bobs-spaces.

January Meteor Showers – The Quadrantids

   There has been some news noise about viewing the Quadrantid Meteor Shower during the early hours of tomorrow (Monday) morning. But none have mentioned that the Moon also rises at about the same time as the radiant for the meteor shower, and that reflected light from the 24-day old waning crescent Moon will ‘drown’ out many of the dimmer meteors however there should still be several of the brightest of the meteors visible.
   The average hourly rate, ZHR, for this meteor shower ranges from 60 to several hundred so I think there are good odds that some meteors will still be seen despite the interference from moonlight. To maximize the viewing wait until about an hour or so before dawn when the radiant is high above the horizon.
   Even if you do not see any meteors you are at least able to see several of the other planets in the solar system as they are currently arranged along the eclitptic from southeast to southwest at sunrise local time. In dark enough skies with at least binoculars you should be able to catch a glimpse of Comet Catalina (C/2013 US 10). Current estimates have it at somewhere around 5th magnitude.
Boötes the Herdsman
   The radiant is the area from where the meteors seem to radiate outward from. Meteor showers owe their name to the constellation region the radiant is located within and as this graphic shows the radiant is within the boundary of the constellation Boötes the Herdsman. So why the name Quadrantids?
quadran-muralis

   On some of the older star charts there is a now ‘extinct’ constellation called Quadrans Muralis, the Mural. This was a constellation located between Boötes and Draco the Dragon that was created in 1795 by French Astronomer Jérôme Lalande. The Meteor Shower was named for the no longer used constellation.

   
   
   
   

Caution: Objects viewed with an optical aid are further than they appear.
Click here to go to the Qué tal in the Current Skies web site for more observing information for this month.

2015 Leonid Meteor Shower

   During the early winter months of A.D. 902, Chinese astronomers recorded what were probably the first written accounts of a meteor shower. This event was described as a time when the stars fell like rain.Click on graphic to see it full size. Centuries later, in November 1799, the stars again fell like rain during a spectacular display witnessed across the colonies by North American astronomers. The shower activity was also recorded by the famous German scientist and geographer Alexander von Humboldt while he was on an expedition in Venezuela. During one intense period, witnesses described seeing as many shooting stars as actual stars. Approximately 33 years later (November 12-13, 1833), the skies over eastern North America were streaked with so many meteors that during a nine-hour period, observers calculated the Zenith Hourly Rate (ZHR) to be a few thousand, totalling to about 240,000 meteors.

   Following the 1833 meteor storm, interest in and study of meteors increased tremendously. By studying records, astronomers noted that meteors originate from a specific area of the sky within a certain constellation; hence the Leonids, Perseids, and so on. Observers also noted that as the night wore on and Leo “moved” westward, the shower’s point of origin stayed with the constellation. Thirty years later, after much study, Yale astronomer Hubert Newton pieced together a history of the Leonid meteor storms.

   The Leonid meteor storms (periods during a meteor shower of intense meteor activity) have been recorded approximately every 33 years dating as far back as the A.D. 902 shower observed by Chinese astronomers. Hubert Newton and other renowned astronomers predicted that another meteor storm would occur during November of 1866 or 1867, 33 years after the recorded meteor activity in 1833. Coincidentally, in 1865-66, two astronomers working independently, Ernest Tempel and Horace Tuttle, discovered a faint comet, the source of Leonid activity, which was named Comet 1866I (now referred to as Comet 55P{Tempel-Tuttle). Comet Tempel-Tuttle’s orbital period around the Sun was determined to be about the same as that of the Leonids, 33 years.

leonid-meteor-storm   The Leonid shower’s spectacular peak nights during November of 1866 and 1867 validated the two astronomers’ prediction. (Different portions of the Earth may encounter Comet Tempel-Tuttle’s meteor trail in two consecutive years because of the Earth’s changing position.) In 1866, sky observers in Europe noted that the shower’s intensity reached an average of 5,000 meteors per hour; in 1867, observers in North America counted an average of 1,000 meteors per hour. Because Tempel and Tuttle had so accurately predicted the source of the 1866/1867 Leonid meteor storm, the storm of 1899 was much anticipated and promoted by the astronomical community. Unfortunately, the Leonids did not display spectacularly that year. As a result, public interest in the storm waned tremendously. Ironically, the following year, 1900, brought storm displays with peak ZHRs of 1,000. During November 1901, the Leonids averaged about 2,000 meteors per hour.

   The Leonids’ return in the 1930s was also disappointing. Astronomers were concerned because the source comet had not been sighted since its 1866 passage. This suggested that perhaps the comet had broken apart and that the comet debris cloud would no longer be refreshed providing the source for the meteors. However, peak night averages during the 1930s were still impressive with hourly averages in the hundreds.

comet-temple-tuttle   During the early 1960s, the Leonid meteor showers started showing an increase in the hourly rate, similar to the intensity of the showers during the 1800s. In 1965 Comet Tempel-Tuttle was rediscovered. That year the shower’s intensity climbed to over 100 meteors per hour. One year later on November 17, 1966, the most intense meteor storm recorded in history occurred over the Midwestern United States-its average intensity was several thousand per hour, and at one point the storm rates were estimated at more than 100,000 meteors during a 20-minute period.

   So here it is 2015, and we are about mid-way through the 33-year period for the Meteor Storm. So no storm this year or for the next several years. Expect to see a few meteors streaking outward from the radiant within the backward questions mark shaped asterism of Leo, but with an average hourly rate (ZHR) of 10-20 there are often long stretches of time between sightings. And remember that all meteor showers have a span of time before and after the peak when meteors will be visible. This year the activity for the Leonids is for about one week from November 14-21 this year with the peak time calculated for 4 UT 18 November (10 pm CST 17 November). The radiant is near the hook part of the ‘backward question mark’ shape.
   Best viewing for a meteor shower is during the hours before sunrise as the part of the Earth you are on is turning into the direction that the Earth is moving as it revolves around the Sun. In effect you are moving ‘head first’ into the cloud of cometary debris. In the Midwest United States where I live Leo rises at around 3am CST so the timing for viewing the Leonids around 94o west longitude is pretty good. And this with a thin waning crescent Moon rising after Leo rises.

cleardarkskieschart   Use this web site to see a forecast for how clear the skies will be for your location.
   
   
   

Caution: Objects viewed with an optical aid are further than they appear.
   Click here to go to the Qué tal in the Current Skies web site for more observing information for this month.

Northern Taurid Meteors

7x50 Binoculars

7×50 Binoculars

   Given all the ‘fanfare’ to annual meteor showers like the Perseids in August often the annual minor meteor showers are overlooked. Currently we are more or less at the mid-point during the Northern Taurid Meteor Shower. This meteor shower peaks during the coming night hours tonight and into tomorrow (Tuesday) morning. With a ZHR (zenith hourly rate) of only 5 don’t expect a lot of shooting stars. However this minor meteor shower has, in the past, had an outburst of fast meteors and some fireballs.
Click on graphic to see it full size.

Click on graphic to see it full size.

   All meteor showers are named for the constellation that they appear to radiate outward from. The common point within the constellation where the meteors radiate outward from is called the radiant. The Northern Taurids radiant is very close to the open star cluster the Pleiades in Taurus the Bull as the animated graphic above shows. This part of the sky rises during mid-evening local time however the waxing gibbous Moon is over the southern horizon and brightening the sky. The best viewing time will be at or after moonset which is around 2 am local time. This graphic is set for 5 am CST, well after moonset.

   
   
Caution: Objects viewed with an optical aid are further than they appear.
   Click here to go to the Qué tal in the Current Skies web site for more observing information for this month.

A Tale of Two Showers

13 December - 10 pm CST

13 December – 10 pm CST

   After sunset on Thursday December 13th look toward the east or west for ‘shooting stars’, or meteors. Toward the east the short-lived streaks of light are radiating outward from the area of the Gemini Twins constellation. These are the annual Geminids – one of the best meteor showers each year, and at times rivaling the August Perseids. The Geminid Meteor Shower is named for the constellation that the meteors radiate outward from. This is the same for all meteor showers, and the ‘spot’ in the sky is known as the radiant. The Geminid radiant, as shown in the graphic, is just above the ‘twin’ star Castor, and under ideal viewing conditions an average of about 70 meteors per hour could possibly be seen. This year without the interference of moonlight will increase the chances of seeing the meteors.
   Meteor showers result from the Earth’s orbital path intersecting areas of comet debris. Comets, as they orbit the Sun, leave behind pieces of their icy, dirty, selves. If these debris clouds happen to be along the Earth’s orbital path then the Earth will regularly pass through the comet debris cloud. As this happens the small comet pieces hit our outer atmosphere and vaporize from the friction generated heat. We then see these as the shooting stars that make up meteor showers.
   There are, however, two exceptions to this. The January Quadrantid Meteors and the Geminids each come from their own respective asteroid rather than a comet. The source for the Geminids is Asteroid 3200 Phaethon
Un-named Meteor Shower   Looking toward the south to southwest and adding to viewing the Geminids is an un-named meteor shower with a radiant just below the bottom of the ‘Square of Pegasus’, between the ‘square’ and the ‘Circlet’ pattern of stars forming the head of the Western Fish of Pisces the Fishes. This meteor shower originates from Comet Wirtanen, a short-period comet orbiting the Sun every 5.5 years. The comet was discovered in 1948 and according to some predictions the Earth may pass through this comet’s debris cloud for the first time since the comet’s discovery. This part of the sky is over the south at sunset and as this graphic shows the radiant is over the southwest as the Geminids radiant is over the eastern horizon.


Click here to go to the Qué tal in the Current Skies web site for more observing information.

Oh – Orion

The starry skies around Orion

   The Orinids Meteor shower, at least for me, is now history. The sky was very clear however with the ambient light from Kansas City to the south and west the skies had a limiting magnitude of around 2 to 4 depending on which direction I faced. I saw 7 meteors during a 2-hour time span between 3:30 and 5:30 this morning. All were at least 1st magnitude, and none were captured on film despite running the video for nearly the entire time.

Jupiter, the Hyades, and Pleiades

   However I did manage to capture the area around Orion from Taurus over to the Gemini Twins. In the picture above, Orion’s right knee, the star Saiph, is seen between the leaves and branches of a tree. Near the top of the picture is bright Jupiter and the two open star clusters, the Hyades and the Pleiades. This picture is a closeup of Jupiter and the two star clusters.

Click here to go to the Qué tal in the Current Skies web site for more observing information.

Here Come the Orinids

Sunday 21 October – 4 am CDT

   The Orionid Meteor shower reaches its peak on the morning of Sunday the 21st. Best viewing is looking toward the east to south part of the sky after midnight and before sunrise. Look for the stars of Orion – most find Orion from the 3 bright stars forming his belt. Look to the left from the belt stars for the bright reddish-orange star Betelgeuse (often pronounced ‘beetle juice’) that represents Orion’s right shoulder. A little further to the left from Betelgeuse is the radiant, the area where the meteors or shooting stars will seem to be radiating outward from.
   All annular meteor showers, like Orionids, and the more well-known August Perseids, are named for the constellation the radiant is located within. Meteor showers are the result of several factors including the reaction between the comet’s dirty, icy surface with the Sun’s radiant energy and the orbital path the Earth and comets follow around the Sun. All comets leave behind clumps or clouds of comet debris, their surface material, as they come closer to the Sun’s heat energy. Some of this comet debris is left along the Earth’s orbital path such that the Earth regularly passes through these debris clouds. As the Earth passes through the debris the small bits of rock enter the Earth’s atmosphere and as they heat from friction and melt they glow briefly appearing as streaks of light. Some meteors leave a bright glowing trail, called a train, for a few moments. The Orionids average around 20 meteors per hour, however this year estimates are that that number may go up to as many as 60 per hour.
   How the number per hour can increase is based on the debris cloud and where the Earth passes through it. The debris is cloud-like in its shape and there are parts of the ‘cloud’ where the particles are more numerous – the thicker parts of the debris cloud. Meteor showers, like the Earth’s orbit are pretty well known so part of the equation for determining the number per hour is based on knowing what part of the debris cloud the Earth will pass through. This year we apparently pass through a thicker part of the debris cloud.
   Hang on to your hat!

Click here to go to the Qué tal in the Current Skies web site for more observing information.